在本文中,我们介绍了一个高质量的大规模基准数据集,用于英语 - 越南语音翻译,其中有508音频小时,由331k的三胞胎组成(句子长度的音频,英语源笔录句,越南人目标subtitle句子)。我们还使用强基础进行了经验实验,发现传统的“级联”方法仍然优于现代“端到端”方法。据我们所知,这是第一个大规模的英语 - 越南语音翻译研究。我们希望我们的公开数据集和研究都可以作为未来研究和英语语音翻译应用的起点。我们的数据集可从https://github.com/vinairesearch/phost获得
translated by 谷歌翻译
随着人类生活中的许多实际应用,包括制造监控摄像机,分析和加工客户行为,许多研究人员都注明了对数字图像的面部检测和头部姿势估计。大量提出的深度学习模型具有最先进的准确性,如YOLO,SSD,MTCNN,解决了面部检测或HOPENET的问题,FSA-NET,用于头部姿势估计问题的速度。根据许多最先进的方法,该任务的管道由两部分组成,从面部检测到头部姿势估计。这两个步骤完全独立,不共享信息。这使得模型在设置中清除但不利用每个模型中提取的大部分特色资源。在本文中,我们提出了多任务净模型,具有利用从面部检测模型提取的特征的动机,将它们与头部姿势估计分支共享以提高精度。此外,随着各种数据,表示面部的欧拉角域大,我们的模型可以预测360欧拉角域的结果。应用多任务学习方法,多任务净模型可以同时预测人头的位置和方向。为了提高预测模型的头部方向的能力,我们将人脸从欧拉角呈现到旋转矩阵的载体。
translated by 谷歌翻译
头部姿势估计是一个具有挑战性的任务,旨在解决与预测三维向量相关的问题,这为人机互动或客户行为中的许多应用程序提供服务。以前的研究提出了一些用于收集头部姿势数据的精确方法。但这些方法需要昂贵的设备,如深度摄像机或复杂的实验室环境设置。在这项研究中,我们引入了一种新的方法,以有效的成本和易于设置,以收集头部姿势图像,即UET-HEADBETS数据集,具有顶视图头姿势数据。该方法使用绝对方向传感器而不是深度摄像机快速设置,但仍然可以确保良好的效果。通过实验,我们的数据集已显示其分发和可用数据集之间的差异,如CMU Panoptic DataSet \ Cite {CMU}。除了使用UET符号数据集和其他头部姿势数据集外,我们还介绍了称为FSANET的全范围模型,这显着优于UET-HEALPETS数据集的头部姿势估计结果,尤其是在顶视图上。此外,该模型非常重量轻,占用小尺寸图像。
translated by 谷歌翻译
基于量子的通信中的当前技术将量子数据的新集成与经典数据进行混合处理。但是,这些技术的框架仅限于单个经典或量子任务,这限制了它们在近期应用中的灵活性。我们建议在需要经典和量子输入的计算任务中利用量子储存器处理器来利用量子动力学。该模拟处理器包括一个量子点网络,其中量子数据被入射到网络中,并且经典数据通过一个连贯的字段刺激了网络进行编码。我们执行量子断层扫描和经典通道非线性均衡的多任务应用。有趣的是,可以通过对经典数据的反馈控制以闭环方式进行断层扫描。因此,如果经典输入来自动力学系统,则将该系统嵌入封闭环中,即使访问对外部经典输入的访问被中断也可以处理混合处理。最后,我们证明准备量子去极化通道是一种用于量子数据处理的新型量子机学习技术。
translated by 谷歌翻译
量子计算已经从理论阶段转变为实用阶段,在实施物理量子位时提出了艰巨的挑战,物理量子位受到周围环境的噪音。这些量子噪声在量子设备中无处不在,并在量子计算模型中产生不利影响,从而对其校正和缓解技术进行了广泛的研究。但是,这些量子声总是会提供缺点吗?我们通过提出一个称为量子噪声诱导的储层计算的框架来解决此问题,并表明某些抽象量子噪声模型可以诱导时间输入数据的有用信息处理功能。我们在几个典型的基准中证明了这种能力,并研究了信息处理能力,以阐明框架的处理机制和内存概况。我们通过在许多IBM量子处理器中实现框架,并通过模型分析获得了相似的特征内存配置文件来验证我们的观点。令人惊讶的是,随着量子设备的较高噪声水平和错误率,信息处理能力增加了。我们的研究为将有用的信息从量子计算机的噪音转移到更复杂的信息处理器上开辟了一条新的道路。
translated by 谷歌翻译
在本文中,我们呈现了Bartpho的两个版本Bartpho-symlable和Bartpho-Word,这是第一个为越南语预先培训的公共大规模单声道序列到序列模型。Bartpho使用“大”架构和序列序列去噪的预训练方案,因此特别适用于生成NLP任务。我们开展实验,以将我们的巴特照片与竞争对手MBART进行比较,以越南文本摘要的下游任务,表明:在自动和人类评估中,Bartpho优于强大的基线MBART并改善了最先进的。我们释放巴特诺以促进未来的生成越南NLP任务的研究和应用。我们的Bartpho模型可公开提供:https://github.com/vinairesearch/bartpho
translated by 谷歌翻译
量化和验证准备量子状态的控制水平是构建量子器件中的中心挑战。量子状态的特点是实验测量,使用称为断层扫描的程序,这需要大量资源。此外,尚未制定与颞下处理的量子装置的断层扫描,其尚未制定与标准断层扫描的逐时处理。我们使用经常性机器学习框架开发了一种实用和近似的断层扫描方法,用于这种有趣情况。该方法基于具有量子态流称为量子储存器的系统之间的重复量子相互作用。来自储存器的测量数据连接到线性读数,以训练施加到输入流的量子通道之间的反复关系。我们展示了Quantum学习任务的算法,然后是Quantum短期内存容量的提议,以评估近术语量子器件的时间处理能力。
translated by 谷歌翻译
In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.
translated by 谷歌翻译
Symmetry arises in many optimization and decision-making problems, and has attracted considerable attention from the optimization community: By utilizing the existence of such symmetries, the process of searching for optimal solutions can be improved significantly. Despite its success in (offline) optimization, the utilization of symmetries has not been well examined within the online optimization settings, especially in the bandit literature. As such, in this paper we study the invariant Lipschitz bandit setting, a subclass of the Lipschitz bandits where the reward function and the set of arms are preserved under a group of transformations. We introduce an algorithm named \texttt{UniformMesh-N}, which naturally integrates side observations using group orbits into the \texttt{UniformMesh} algorithm (\cite{Kleinberg2005_UniformMesh}), which uniformly discretizes the set of arms. Using the side-observation approach, we prove an improved regret upper bound, which depends on the cardinality of the group, given that the group is finite. We also prove a matching regret's lower bound for the invariant Lipschitz bandit class (up to logarithmic factors). We hope that our work will ignite further investigation of symmetry in bandit theory and sequential decision-making theory in general.
translated by 谷歌翻译
Pareto Front Learning (PFL) was recently introduced as an effective approach to obtain a mapping function from a given trade-off vector to a solution on the Pareto front, which solves the multi-objective optimization (MOO) problem. Due to the inherent trade-off between conflicting objectives, PFL offers a flexible approach in many scenarios in which the decision makers can not specify the preference of one Pareto solution over another, and must switch between them depending on the situation. However, existing PFL methods ignore the relationship between the solutions during the optimization process, which hinders the quality of the obtained front. To overcome this issue, we propose a novel PFL framework namely \ourmodel, which employs a hypernetwork to generate multiple solutions from a set of diverse trade-off preferences and enhance the quality of the Pareto front by maximizing the Hypervolume indicator defined by these solutions. The experimental results on several MOO machine learning tasks show that the proposed framework significantly outperforms the baselines in producing the trade-off Pareto front.
translated by 谷歌翻译